PARP Inhibition by Flavonoids Induced Selective Cell Killing to BRCA2-Deficient Cells

نویسندگان

  • Cathy Su
  • Alexis H. Haskins
  • Chisato Omata
  • Yasushi Aizawa
  • Takamitsu A. Kato
چکیده

High consumption of dietary flavonoids might contribute to a reduction of cancer risks. Quercetin and its glycosides have PARP inhibitory effects and can induce selective cytotoxicity in BRCA2-deficient cells by synthetic lethality. We hypothesized that common flavonoids in diet naringenin, hesperetin and their glycosides have a similar structure to quercetin, which might have comparable PARP inhibitory effects, and can induce selective cytotoxicity in BRCA2-deficient cells. We utilized Chinese hamster V79 wild type, V-C8 BRCA2-deficient and its gene-complemented cells. In vitro analysis revealed that both naringenin and hesperetin present a PARP inhibitory effect. This inhibitory effect is less specific than for quercetin. Hesperetin was more cytotoxic to V79 cells than quercetin and naringenin based on colony formation assay. Quercetin and naringenin killed V-C8 cells with lower concentrations, and presented selective cytotoxicity to BRCA2-deficient cells. However, the cytotoxicity of hesperetin was similar among all three cell lines. Glycosyl flavonoids, isoquercetin and rutin as well as naringin showed selective cytotoxicity to BRCA2-deficient cells; hesperidin did not. These results suggest that flavonoids with the PARP inhibitory effect can cause synthetic lethality to BRCA2-deficient cells when other pathways are not the primary cause of death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective inhibition of BRCA2-deficient mammary tumor cell growth by AZD2281 and cisplatin.

PURPOSE To assess efficacy of the novel, selective poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor AZD2281 against newly established BRCA2-deficient mouse mammary tumor cell lines and to determine potential synergy between AZD2281 and cisplatin. EXPERIMENTAL DESIGN We established and thoroughly characterized a panel of clonal cell lines from independent BRCA2-deficient mouse mammary tumors a...

متن کامل

Progression through mitosis promotes PARP inhibitor-induced cytotoxicity in homologous recombination-deficient cancer cells

Mutations in homologous recombination (HR) genes BRCA1 and BRCA2 predispose to tumorigenesis. HR-deficient cancers are hypersensitive to Poly (ADP ribose)-polymerase (PARP) inhibitors, but can acquire resistance and relapse. Mechanistic understanding how PARP inhibition induces cytotoxicity in HR-deficient cancer cells is incomplete. Here we find PARP inhibition to compromise replication fork s...

متن کامل

The Inhibition and Treatment of Breast Cancer with Poly (ADP-ribose) Polymerase (PARP-1) Inhibitors

BRCA1 and BRCA2 mutations are responsible for most familial breast carcinomas. Recent reports carried out in non-cancerous mouse BRCA1- or BRCA2-deficient embryonic stem (ES) cells, and hamster BRCA2-deficient cells have demonstrated that the targeted inhibition of poly(ADP-ribose) polymerase (PARP-1) kills BRCA mutant cells with high specificity. Although these studies bring hope for BRCA muta...

متن کامل

Enhanced cytotoxicity of PARP inhibition in mantle cell lymphoma harbouring mutations in both ATM and p53

Poly-ADP ribose polymerase (PARP) inhibitors have shown promise in the treatment of human malignancies characterized by deficiencies in the DNA damage repair proteins BRCA1 and BRCA2 and preclinical studies have demonstrated the potential effectiveness of PARP inhibitors in targeting ataxia-telangiectasia mutated (ATM)-deficient tumours. Here, we show that mantle cell lymphoma (MCL) cells defic...

متن کامل

Rad51 and BRCA2 - New Molecular Targets for Sensitizing Glioma Cells to Alkylating Anticancer Drugs

First line chemotherapeutics for brain tumors (malignant gliomas) are alkylating agents such as temozolomide and nimustine. Despite growing knowledge of how these agents work, patients suffering from this malignancy still face a dismal prognosis. Alkylating agents target DNA, forming the killing lesion O(6)-alkylguanine, which is converted into DNA double-strand breaks (DSBs) that trigger apopt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017